A Generic Preprocessing Optimization Methodology when Predicting Time-Series Data

نویسندگان

  • Ioannis Kyriakidis
  • Kostas D. Karatzas
  • Andrew Ware
  • George Papadourakis
چکیده

A general Methodology referred to as Daphne is introduced which is used to find optimum combinations of methods to preprocess and forecast for time-series datasets. The Daphne Optimization Methodology (DOM) is based on the idea of quantifying the effect of each method on the forecasting performance, and using this information as a distance in a directed graph. Two optimization algorithms, Genetic Algorithms and Ant Colony Optimization, were used for the materialization of the DOM. Results show that the DOM finds a near optimal solution in relatively less time than using the traditional optimization algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unfolding preprocessing for meaningful time series clustering

Clustering methods are commonly applied to time series, either as a preprocessing stage for other methods or in their own right. In this paper it is explained why time series clustering may sometimes be considered as meaningless. This problematic situation is illustrated for various raw time series. The unfolding preprocessing methodology is then introduced. The usefulness of unfolding preproce...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

ارائه یک رویکرد فازی برای بهینه‌سازی پیش‌بینی سری زمانی با مرتبه بالا

It is difficult to apply the real world’s conceptions due to their uncertainty. Generally, time series are known to be non-linear or non-stationary. Regarding these two features, a system should be sensitive enough to apply the unity of time series and repeat this sensitiveness in the prediction. A predict system can exactly scrutinize the hidden features of time series and also can have high p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Computational Intelligence Systems

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016